The East-West Center is an education and research organization established by the U.S. Congress in 1960 to strengthen relations and understanding among the peoples and nations of Asia, the Pacific, and the United States. The Center contributes to a peaceful, prosperous, and just Asia Pacific community by serving as a vigorous hub for cooperative research, education, and dialogue on critical issues of common concern to the Asia Pacific region and the United States. Funding for the Center comes from the U.S. government, with additional support provided by private agencies, individuals, foundations, corporations, and the governments of the region.

East-West Center Working Papers are circulated for comment and to inform interested colleagues about work in progress at the Center.

For more information about the Center or to order publications, contact:

Publication Sales Office
East-West Center
1601 East-West Road
Honolulu, Hawai‘i 96848-1601

Telephone: 808.944.7145
Facsimile: 808.944.7376
Email: ewcbooks@EastWestCenter.org
Website: www.EastWestCenter.org
Famine in North Korea Redux?

Stephan Haggard and Marcus Noland

Stephan Haggard is the Lawrence and Sallye Krause Professor at the University of California, San Diego Graduate School of International Relations and Pacific Studies.

Marcus Noland is Senior Fellow at the Peterson Institute of International Economics, and Senior Fellow at the East-West Center.

East-West Center Working Papers: Economics Series is an unreviewed and unedited prepublication series reporting on research in progress. The views expressed are those of the author and not necessarily those of the Center. Please direct orders and requests to the East-West Center’s Publication Sales Office. The price for Working Papers is $3.00 each plus shipping and handling.
Abstract

In the 1990s, 600,000-1 million North Koreans, or about 3-5 percent of the pre-crisis population perished in one of the worst famines of the 20th century.

North Korea is once again poised on the brink of famine. Although the renewed provision of aid is likely to avert a disaster on the scale of the 1990s, hunger-related deaths are already occurring and a dynamic has been set in motion that will carry the crisis into 2009.

North Korea is a complex humanitarian emergency characterized by highly imperfect information. This paper triangulates quantity and price evidence with direct observation to assess food insecurity in North Korea and its causes. We critique the widely-cited UN figures and present original data on grain quantities and prices. These data demonstrate that for the first time since the 1990s famine, the aggregate grain balance has gone into deficit. Prices have also risen steeply. The re-emergence of pathologies from the famine era is documented through direct observation. Although exogenous shocks have played a role, foreign and domestic policy choices have been key.

Keywords: famine, North Korea
JEL Categories: Q1, O1, P2

Acknowledgement: The Smith Richardson Foundation provided research support for this project; the authors would like to thank Allan Song for his efforts. Jennifer Lee provided research assistance.
Imperfect and asymmetric information pose an ongoing challenge to the management of complex humanitarian emergencies. Often for political reasons—including authoritarian rule, the breakdown of central authority or civil conflict—donors face problems assessing the causes and extent of distress in recipient countries. These conditions frustrate the formulation of effective relief strategies.

North Korea is an exemplar. During the 1990s, 600,000-1 million North Koreans, or about 3-5 percent of the pre-crisis population, perished in one of the worst famines of the 20th century. The closed nature of the regime made it nearly impossible for the outside world to recognize the onset of food distress and for aid to enter the country in a timely and targeted way.1 The country is again experiencing signs of severe food shortages, and although more information is available than in the past, it remains imperfect and politicized.

The current cycle of distress can be traced back to late 2005. On the back of improving harvests and generous outside aid, the government attempted to ban the private trade in grain; in doing so, it criminalized the primary mechanism through which most North Korean families obtained food. The regime also sought to revive the state run public distribution system (PDS) of quantity rationing, in part through confiscatory grain seizures in the rural areas.2 The government also threatened to expel the World Food Program (WFP), incapacitating the outside world’s early warning system.

1 More detailed background can be found in Noland (2000, 2004a, 2004b), Noland, Robinson, and Wang (2001), Haggard and Noland (2007), and sources cited therein.

2 In August 2005, the government decided to reinstate the PDS as of October 1 and to ban private trading in grain. Implementation was uneven and eventually the government was forced to quietly shelve the policy as PDS sites were not able to meet targets and markets for grain began to reemerge. These developments coincided with reports of the government forcibly extracting food in contravention of the rules determining the disposition of cooperative farm output following the 2005 harvest.
High politics has also played an important role in recent shortages. More than two-thirds of the grain consumed in North Korea is produced locally (figure 1). Domestic production is highly dependent on fertilizer, however, much of which has been donated by South Korea in recent years. Following missile and nuclear tests in 2006, South Korea suspended fertilizer shipments; predictably, North Korean grain production fell. Food aid also dried up, and with global food prices rising, the regime’s capacity to import grain on commercial terms also withered.

These policy-derived shocks were certainly exacerbated by adverse weather, as the country experienced flooding in 2006 and 2007, concentrated in grain growing regions of the southwest. Yet as this brief narrative suggests, exogenous shocks in the form of both weather and rising world prices must be seen in the context of a wider political economy that involves both foreign and domestic policy choices.

In this article, we triangulate between three sources of information—quantity balances, prices, and direct observation—to assess the extent of distress and its causes. We begin with a reconstruction of aggregate food balances, and show that recently-released United Nations estimates of the production shortfall are almost certainly exaggerated. Nonetheless, even after making appropriate adjustments, we find that for the first time since the 1990s famine the aggregate grain balance has gone into deficit. We show that the decline in aggregate supply predates the floods of 2007 and the onset of rising world food prices in 2007-08.

A central contribution of this paper is to match these aggregate balances with a consideration of the evolution of prices over the last three years. Prices have assumed increased salience due to fundamental changes in the North Korean food economy. The
famine era collapse of the PDS encouraged entrepreneurial coping behavior and the emergence of markets. Food security is increasingly a function of household financial status as the PDS has receded in importance and food is increasingly accessed via the market.

Employing an original data set of more than 600 grain price observations, we map the path of prices against a number of potential drivers, and show that while exogenous shocks, including floods and rising world market prices, affect prices, reckless policies have played an important role as well. Moreover, some external constraints facing North Korea are themselves endogenous to political choices by the North Korean leadership, including those regarding relations with the WFP, the country’s nuclear ambitions, and other foreign policy provocations. The latter are responsible for cuts in South Korean food and fertilizer aid and thus have both directly and indirectly affected available grain supplies.

In combination, these factors suggest a somewhat different approach to the political economy of famine than is visible in the extant literature. Rather than focusing solely on the domestic political determinants of famine, such as authoritarian rule (Sen 1981) or the presence of anti-famine political compacts (de Waal 1997), we also need to consider how governments relate to the outside world. In North Korea’s case, a foreign policy that emphasized economic autarky and a confrontational foreign policy combined to limit the access to external sources of supply in times of need.
I. FOOD BALANCES

The conventional starting point for assessing food needs is a quantity balance sheet.\(^3\) Total need consists of requirements for human consumption, seed, feed, industrial uses (including the manufacture of alcohol), and losses and spoilage. Domestic supply consists of production and any drawdown on accumulated stocks. The gap between domestic needs and supply is the uncovered food balance, which must be met through commercial imports or aid.

Each of these components is uncertain in the North Korean case. Analysts estimate human consumption by imputing per capita consumption or caloric intake (controlling for the heterogeneity of need across demographic groups) and multiplying that estimate by the population. Unfortunately, considerable uncertainty surrounds the size of the North Korean population; the most recent population census data pertain to 1993, that is, before the famine that may have killed a non-trivial share of the population (Eberstadt 2007 chapter 2). At times during the 1990s it appears that the FAO/WFP overestimated population (and hence consumption needs), in part because of the ravages of the famine itself.\(^4\)

\(^3\) This section draws on Haggard and Noland (2008) which provides extensive documentation of the primary source materials.

\(^4\) The initial FAO/WFP assessment released in December 1995 implied that the population was just over 22 million. In the November 1997 food balance calculation the FAO/WFP assumed that mid-year 1998 population would be 23.5 million. As a point of comparison the South Korean government estimate was 21.9 million. By June 1999, however, it was apparent that famine mortality was of such a magnitude that it was germane to calculate overall demand. Food balances were subsequently recalculated based on an official North Korean government population estimate of 22.55 million for August 1999—*amounting to a downward revision of nearly one million people from the FAO/WFP’s previous assumption*. The population issue emerged again in 2008, when assessment teams were only able to
Moreover, there is also no consensus about the North Korean diet, and differing assumptions regarding caloric needs and nutritional sources can generate significantly different estimates of human needs. Heather Smith’s (1998) comprehensive analysis of North Korea’s historical consumption patterns of all food categories concludes that “the share of rice and maize in total cereal intake has historically been much lower than assumed by international agencies” (p.57) and that the cereals consumption figure adopted by the FAO/WFP probably overstated their role in the North Korean diet by approximately 20 percent (figure 1).

Total requirements must also account for seed, livestock feed, industrial uses such as the manufacture of alcohol, and postharvest losses. Seed is a relatively small component, but livestock feed is significant and has exhibited substantial change. The initial 1995 FAO/WFP assessment estimated feed requirements at 1.4 million metric tons of cereal, well above Kim, Lee, and Sumner’s (1998) estimate of 584,000 for a typical year. Subsequent reports (corroborated by eyewitness accounts) described culling of livestock on the order of “30 to 90 percent,” “more than half,” “most” and the UNDP reported that “livestock and access areas accounting for less than 20 million people, while the putative population of the country was 24 million.

5 Hazel Smith (2008) provides a counterargument that because of its cold climate, caloric intake needs in North Korea are actually higher than those specified by the UN agencies.

6 FAO/WFP, 1996a, pp. 3

7 FAO/WFP, 1996b, pp. 3

8 FAO/WFP, 1997, pp. 2. This report also observes that the extensive culling of livestock should have, at least temporarily, increased the supply of meat and thereby reduced demands for other foods.
poultry populations fell dramatically after the floods.”9 As a consequence of these reductions in herd size, the estimated feed requirement was cut to 600,000MT for the 1996/97 marketing year and 300,000 for the 1997/98 marketing year, where it remained constant for a number of years. Yet in the 2003/2004 assessment, the FAO/WFP reported a figure on feed demand provided by the North Korean agriculture ministry of 178,000MT, despite the fact that the FAO-WFP were reporting that the herds had been substantially restocked. In other words, over the course of a decade, the estimated feed requirement fell by more than 1 million metric tons—from nearly a quarter of total use to less than 5 percent—despite a reported increase in herd size. We make this observation not to belittle the analysts at the FAO and WFP but to illustrate the magnitude of uncertainty surrounding important components of aggregate demand.

Finally, consider post-harvest losses. Early FAO/WFP calculations assumed that these were relatively minor, but they were raised to 12 percent of production for the 1997/98 balance sheet, and 15 percent the following year. By assumption they have remained constant since, despite North Korean government attempts to reduce them. This relative constancy reflects in part political negotiations among the WFP, the FAO, and the North Korean government and is without serious empirical foundation; recent FAO/WFP reports even openly acknowledge as much.10

9 The UNDP report goes on to quantify these losses “Data gathered for the purposes of this study indicate a reduction of 37 percent of cattle, 36 percent for sheep and goats. More importantly, grain eating pig and poultry populations declined by 57 percent and 90 percent, respectively.” (United Nations Development Program, 1998, pp. 16)

10 For example, the Food and Agricultural Organization and World Food Programme states “the level of post-harvest crop loss in DPR Korea has been a contentious issue in recent years, with estimates ranging from 2 percent to as high as 30 percent. Unfortunately, none is based on quantified investigation” (FAO/WFP, 2003, pp. 17-18). The following year’s
As a consequence of these various sources of uncertainty, differences among need estimates are extraordinarily large, ranging from a relatively expansive 6 MMT (from the South Korea Rural Development Administration (KRDA)) to a highly compressed, minimum human need requirement of roughly 3 MMT. Consumption at this highly compressed level would certainly not avoid hunger; food would have to be distributed precisely across the population, an outcome that is both logistically and politically implausible (Haggard and Noland 2007).

How about supply? The biggest single component of supply is domestic production (figure 1). Since production cannot be measured directly, outside observers impute it by combining estimates of planted acreage and yields. Yields pose more challenges than acreage, which can be observed through satellite imagery. The South Korean government estimates yields by operating experimental farms mimicking North Korean agricultural techniques. The United Nation’s Food and Agriculture Organization uses selective field sampling to generate estimates of yields, yet the organization is also diplomatically constrained to recognize North Korean official data. This is an important constraint insofar as North Korea has shown a past tendency to understate supply during bad times in order to maximize assistance. In the spring of 2008, for example, the FAO downwardly revised its estimate of the previous harvest by a whopping 25 percent.11

11 Other estimates of current grain output range from 4.01 MMT to a low of 2.5 MMT; all assessments point to a sharp decline in output. At the higher end of the production estimates, KRDA shows a decline in total food equivalent of 500,000 metric tons (MT) between the 2006 and 2007 harvests, from 4.48 MMT to 4.01 MMT or 11 percent. The US report reads “the level of post-harvest crop loss in DPR Korea has been a contentious issue in recent years, with estimates ranging from 3 percent to more than 30 percent. Unfortunately, no systematic investigations have been taken to clarify the issue.” (FAO/WFP, 2004, pp. 15)
Estimating imports is also challenging. North Korea treats trade data as a state secret, and a number of the country’s trade partners—most notably China—are circumspect about revealing their aid commitments. But the magnitude of discrepancies across external sources on imports and aid is smaller than with respect to domestic production. It is possible to track most aid, including the share passing through the WFP. As shown in figure 1, aid has been volatile during recent years, and its shrinkage is an important contributor to the decline in aggregate supply.

Lastly, it is possible that North Korea could be running down accumulated stocks, including stocks reserved for the military. There is disagreement as to the size of these putative stocks and North Korea’s management of them, although recent reports have suggested a release of military stocks around the time that prices peaked in early 2008. However, the consensus is that the release of stocks is unlikely to have had a large quantitative impact on the balance sheet although as we will see they can have a temporary impact on prices.

Figure 2 reports two alternative estimates of North Korea’s uncovered grain needs. One is constructed from FAO/WFP figures. The other adjusts these estimates on the supply-side by substituting USDA estimates of North Korean production for the FAO estimate, and

Department of Agriculture estimates show a more modest decline in output but from a lower starting point: from 3.49 MMT to 3.32 MMT. The FAO revision marks a large reduction not only from the 4 MMT of the previous year but also from the five-year average of 3.7 MMT. Finally, at the low end, Good Friends has cited an estimate of total output of 2.5 MMT but without extensive justification of sources or methods.

12 On the putative size of military stockpiles see Noland 2000 box 5.2. Pomnyun (2008) and Good Friends (2008) report that the government released military stocks in the spring of 2007, while Lee (2008) and Moon (2008) report that military stocks were released in May 2008 at the time when prices were peaking.
adjusting the demand-side to reflect the South Korean government’s estimate of the North Korean population and the Smith-adjusted estimates of human consumption.

The UN series are not plausible. According to these figures, North Korea has avoided food shortages in only one of the last 12 years—2000—and then only barely. If North Korea really experienced the shortfalls depicted in this data, it would have experienced famine. The adjusted figures tell a more plausible story. The very large food deficits during the famine period in the mid-1990s were followed by a modest agricultural recovery and small surpluses. After 2005, however, the combination of declining domestic production and more erratic aid pushed available supply below even adjusted total needs for the first time since the famine. By spring 2008, the wolf really was at the door. A consideration of prices provides additional information both on the extent of distress and some of its causes.

II. EVIDENCE FROM PRICES

North Korean authorities impede the collection and dissemination of price data. Nonetheless, increasingly-active NGOs and the growing availability of cell phones in the Chinese border region have facilitated the monitoring of price trends. These data are assembled primarily from observations reported in Good Friends’ publication North Korea

13 Using South Korean government estimates of North Korean output would yield a very similar picture to the one derived from USDA data. These two series track each other closely, but are significantly different from the FAO series.
Today, NKNet’s *DailyNK*, and other Korean-language academic and media sources. As with all data on and from North Korea, these series too should be treated with caution. The data are spotty, markets are fragmented, and we have little information on quality differences. It is also likely that the actual collection of the data is endogenous; more effort is placed on collecting and disseminating data during periods of stress or concern about the food situation, both secularly and seasonally (figure 3). As a consequence the series that we have constructed may well exhibit upward bias and greater volatility relative to the “true” price series.

A scatterplot of more than 600 observations of corn and rice prices from 19 North Korean cities over the period June 2004 to August 2008 is reported in figure 4. A reasonably consistent time series could be constructed for eight cities, interpolating between

14 Good Friends is a Buddhist charity which has long been involved in refugee and famine relief work in North Korea, NKNet includes a significant number of North Korean refugees or defectors. It has taken an aggressive line with regard to the magnitude of problems facing North Korea; based on a network of informants that are claimed to include North Korean government officials, claiming that North Korea faced a food shortage of 1.8MMT and that 200,000-300,000 lives could be lost in 2008 due to renewed famine (Pomnyun 2008). (The Good Friends estimate of the food shortage is particularly striking insofar as they estimate that the population of North Korea is only 20 million due to 4 million famine related deaths in the 1990s.) NKNet has generally taken a more skeptical line, arguing that it is hard to assess the actual magnitude of the shortage and estimating excess deaths on the order of 100-1000 through June 2008, though even NKNet reports disturbing developments, including the exhaustion of rations for some military units (NKNet 2008).

15 One might think on this as a situation where the observed price, p^o, is the sum of the true price (determined by supply and demand fundamentals) p^f, and a random component, e, either measurement error or short run fluctuations that are orthogonal to q and its determinants $E(e|p^f)=0$, i.e. $p^o=p^f+e$. In the case at hand there are two potential sources of bias. There may be a tendency to disproportionately collect data on observations with big realizations of e (so $E(e)>0$). It may also be the case that there is a similar tendency to disproportionately pick up observations with large positive values of e when p^f is small (so $E(e|p^f)=f(p^f)$ with $f'(p^f)<0$). Both tendencies would upwardly bias both the mean and variance of the observed relative to the true series of prices.
missing observations, and an index of grain prices was formed with corn and rice each receiving 50 percent weights. This index, along with the FAO index of world grain prices, is reported in figure 5 together with the timing of nine events since the fall of 2005 of potential significance to the trajectory of prices (summarized in table 1). Two of these events are weather-related: the floods in July 2006 and August 2007. The remainder, however, are domestic policy actions or developments in the external political and economic environment. In chronological order, we include: the October 2005 ban on private trade in grain and the revival of the PDS; the 9 October 2006 detonation of a nuclear device and the subsequent imposition of UN sanctions on 14 October 2006; the April 2007 tightening of internal trade restrictions; the December 2007 imposition of export controls by China in response to rising domestic food prices (which coincided with a North Korean ban on trading activities by younger women); the reported 14 May 2008 release of military stocks and the nearly-coincident 15 May 2008 afternoon announcement (US time) of the provision of US food aid (i.e. 16 May Korea time); and 30 June 2008 arrival in Nampo of the first shipment of US food aid. The mapping of these events against the time-line of prices provides some suggestive evidence as to the drivers of price movements.

In sifting through these possible influences, it is important to underline some expected seasonality in the data. We expect prices to decline following the fall harvest, and to rise in the spring, the traditional “lean season” prior to the summer harvest of potatoes and some secondary grains. The July 2006 floods generate the first noticeable inflection

16 They are Chungjin, Haeju, Hamheung, Hoeryong, Onsung, Pyongyang, Sariwon, Sineuiju, and Wonsan.

17 See Haggard, Noland, and Weeks (2008) for details.
point in the price series, producing a 37 percent increase in prices between July and
September 2006. The nuclear weapon test and UN sanctions the following month do not
appear to have sufficient impact to reverse the seasonal pattern of post-harvest price decline.
In the aftermath of the July 2006 missile tests the South Korean government limited food
and fertilizer shipments, but these shipments resumed following a breakthrough in the
nuclear negotiations in early 2007. Food shipments might be expected to have relatively
immediate effects on prices, but the consequences of the interruption of fertilizer are more
indirect; reduced availability and application of fertilizer has lagged effects via the size of
the subsequent harvest, which was also affected by the floods.

The data indicate that North Korean grain prices have outstripped either estimates of
overall inflation or the rise of world grain prices, quadrupling between May 2007 and May
2008 alone; although world market prices set a floor under North Korean prices, country
specific effects were clearly in play. Prices declined following the announcement of the
resumption of large-scale assistance and the possible release of military stockpiles, but did
not converge fully to world prices.

With respect to the timing of these increases, it is important to note that prices had
already begun to accelerate more rapidly than world market prices before the August 2007
floods hit, possibly reflecting the secular decline in aggregate supply and uncertainty
regarding the ultimate resolution of the nuclear issue and the resumption of external support
in particular. The rapid increase in prices continued through mid-May 2008, apparently
accelerating around April 2008. Although caution is warranted in drawing precise
inferences, the high-point in prices coincided with a near-perfect storm of exogenous and
self-inflicted shocks.Externally, world market prices were cresting but the constraints
facing North Korea were political as well as economic. China was also restricting exports of grain and fertilizer in an effort to contain domestic inflation; increasingly disaffected with North Korean behavior, Beijing was unwilling to play the role of lender of last resort that it had in the past. The elections in the South had stalemated North-South Korean relations—and aid—but the US promise of assistance had not yet materialized. In both cases, North Korea’s failure to be completely forthcoming in negotiations over the status of its nuclear program played a role.

Internally, the government sought to cope with rising prices by imposing a variety of restrictions on market activity: through price controls, through restriction on who could trade in the market, through crackdowns on corruption in cross-border trade (Haggard, Noland and Weeks 2008). These actions also had the unintended consequence of driving up the risk premium on trade and producing the kind of speculative activity that frequently accompanies pre-famine and famine conditions.

Prices peaked the following month, falling dramatically after the US aid announcement and the rumored release of military stocks, presumably due to sellers dumping inventory in anticipation of significant new supplies coming into the market. The market appeared to overshoot slightly, possibly reflecting both an overestimate of stocks released into the market and a lack of understanding of the regulatory and logistic impediments to the US quickly delivering large amounts of food aid. These impediments included the requirement that US aid be primarily sourced in the US and shipped on US-flagged vessels; the failure of the expected Japanese release of rice stocks to materialize; and the implicit links between the provision of aid and progress on the nuclear front, which was slow in coming.
Two other aspects of the price evidence bear mentioning. The first is spatial. There is a high correlation of price movements across provinces and across cities. Figure 6 reports provincial corn prices, again interpolating between observations. (In the interests of brevity, the equivalent chart for rice which yields quite similar results is not reported.) Indeed, there appears to be some diminution of cross-provincial price dispersion over time, as measured by the cross-provincial coefficients of variation (figure 7). It is possible that this could be a spurious result, reflecting the relative paucity of observations during the early part of the sample period. But the hypothesis of price equality across major cities cannot generally be rejected for 2008 data, reinforcing the notion that there has been a narrowing of spatial price dispersion and a possible integration of markets (table 2). As a result, cross-provincial and cross-city patterns of price movements do not reveal any obvious patterns. Provinces bordering China, which might be expected to have better access to imports, do not exhibit uniquely low or stable prices relative to the rest of the country. The Northeast, which was disfavored by the government during the first famine, does not appear unique. And perhaps most interestingly, Pyongyang does not appear immune from trends in prices, a fact that is at least suggestive of generalized distress.

The second observation concerns relative prices. As the real price of rice rises, households shift to less preferred grains such as corn, barley, and millet, and, in the worst case, turn to grasses and foraging of other plant sources of food. Figure 8 shows that the relative price of corn to rice began rising around the time of the 2007 floods, rising again with the tightening of trading activities. The corn-rice price ratio fell with the aid announcement and rumors of military stock releases but then rose again, ultimately increasing more than 75 percent in the index of eight major cities, from 0.34 in mid-August
2007, to a peak of 0.60 in July 2008, the highest value since the series began in 2004, before stabilizing. This rise in the relative price of corn to rice is another signal of intensifying distress.

III. DIRECT OBSERVATION

The quantity and price evidence presented thus far can be used to make indirect inferences about distress in North Korea. Obviously, it would be desirable to have direct observation, particularly in the North Korean case where considerable evidence documents the non-uniformity of distress across geographical regions and political-economic classes. Unfortunately, the North Korean government systematically impedes access of foreign observers, including relief agencies, rendering even their efforts to collect systematic data on conditions suspect (Haggard and Noland 2007). However, the deepening of the North Korean food emergency was accompanied by an intensification of surreptitious activities by South Korean NGOs, most notably Good Friends and NKNet, which have generated anecdotal accounts of conditions in North Korea via networks of informants.

Moreover, we now have access to assessments carried out by the WFP and a consortium of US NGOs in conjunction with the large-scale aid program finalized in 2008 (Anderson and Majarowitz 2008, WFP 2008). The American NGOs evaluated conditions in two provinces in the northwest, North Pyongan and Chagang, while the UN agencies were responsible for evaluating conditions in the rest of the country.

While access was generally better than in the past, it remained constrained and the assessment was therefore not entirely systematic. Assessment teams were not allowed to
visit markets. North Korean authorities selected the households and institutions to be visited, were present during the interviews, sometimes objected to or declined to translate certain questions as inappropriate, and would sometimes interrupt or correct respondents’ answers. The teams were unable to conduct any formal anthropomorphic studies as have been carried out in the past, and was required to accept official statistical claims at face value.

Nonetheless, the assessments corroborate the quantity and price evidence presented here. PDS rations had been cut from a target of 500-600 grams to 150 grams or 700 kilocalories per day over the 2007-8 crop cycle. This rapid decline implies that an increasing share of demand is being met through the market as confirmed in household interviews; sole reliance on state-administered provisions would otherwise portend massive famine. Increased marketization also underscores the salience of the price increases: hunger is now driven not only by the collapse of the PDS but by rapidly increasing real grain prices. The WFP reports that three-quarters of households have reduced their food intake (90 percent in the case of PDS recipient households) and more than half consume only two meals a day, though given the constraints on the assessment process, one cannot know how representative is this sample. On the supply side, both WFP and NGO interviews with local officials indicated that prospects for the upcoming harvest were uncertain due to lack of inputs, including fertilizer, fuel, and electricity and decreased worker capacity or effort, and possible diversion of effort to unregulated plots. Local officials interviewed by the NGO
team indicated that cereal stocks would be completely exhausted in 24 of 25 counties visited by the end of June 2008.18

Apart from corroborating observable macro trends, the assessments however also document the re-emergence of pathologies from the famine era. On the demand side, the WFP reports that more than 70 percent of households are collecting wild foods, a 20 percent increase from 2003-05; this finding is consistent with evidence of a shift in demand toward less preferred cereals (and the sharp increase in corn-rice price ratios) which was confirmed in the household interviews. Eighty percent of PDS-dependent households report receiving assistance from relatives or friends compared to 60 percent in 2003-05. These consumption patterns are manifested in interviews with doctors and other informants of modest increases in malnutrition, low birth weights, infant mortality, and decreased work and school attendance.

The WFP also identifies specific socio-economic groups prone to food insecurity. Consistent with prior historical experience, shortages are not limited to the flood-affected areas but include the cities of the industrial northeast. These findings suggest both the difficulties of urban residents reliant on market sources of supply and the breakdown of within-country transfers due to rising fuel and transportation costs and intensified

18 However the WFP also documents a significant increase in livestock, though pattern appears complex. The biggest increases are among PDS-dependent households, raising goats and rabbits, which subsist on grass, as a coping behavior. There are reports, particularly in the northeast, of herds being culled do to lack of feed. Under conditions of widening inequality, it is quite possible that these coping responses co-exist with an increase in livestock production to meet the demands of the well-to-do.
restrictions on market activities. Increased vulnerability of the rustbelt industrial proletariat as well as flood-impacted farmers, together with a disintegration of the normal transfer process, were precisely the conditions that gave rise to the generalized distress of the 1990s famine (Haggard and Noland 2007).

IV. CONCLUSION

This paper has examined three sorts of evidence—quantity, price, and direct observation—concerning the evolution of the North Korean food economy. Three conclusions stand out. In 2008 the aggregate balance between grain requirements and supply slipped into deficit for the first time since the 1990s famine. The decline in aggregate sources of supply is not simply the result of exogenous shocks, but of the decline in aid, which in turn reflects diplomatic conflicts between North Korea and the international community. Domestic production has been adversely affected by cuts in the concessional deliveries of fertilizer, fuel, and other inputs while aid has been directly impacted by North Korean foreign policy behavior. Rising global grain prices constitute an adverse development, but their impact has been exacerbated by the reluctance of the government to undertake reforms of the external sector that would permit more robust commercial imports.

Second, prices have risen steeply, and by magnitudes that cannot be explained by either domestic inflation or the increase in world grain prices alone. Bad weather has undoubtedly affected prices, but prices were already on an upward trajectory before the

19 “The team found that the seven counties visited try to be as self-reliant as possible in food provision: in fact in three counties they did not receive any commodities from other counties or provinces in 2007” (Anderson and Majarowitz 2008 8).
2007 floods, reflecting a sharp drop in assistance from South Korea and other donors and North Korean policies that disrupted or rendered uncertain the functioning of domestic markets.

Finally, the declining significance of the PDS as a source of food—documented through direct observation—coupled with rising prices suggest a fundamental difference with the 1990s famine. During that episode the incidence of distress was a proximate function of the collapse of the PDS. The current emergency, in which the market plays a more prominent role, is more akin to pre-famine situations in market economies where access to food is determined by economic status.

Although hunger-related deaths are occurring, we doubt that the current episode will come close to matching the 1990s famine for two reasons. First, during that episode, famine or pre-famine conditions had emerged as early as 1993. But it was not until 1995, with a full-blown famine under way, that the government issued an appeal for help, and it then took nearly six months before aid of any magnitude started to arrive. During the 2005-8 cycle, aid has been vulnerable to political constraints. But the global community has gained access to information such as that presented in this paper and the response to distress has been timelier as a result.

Second, even in its degraded state, the marketization of the North Korean economy has probably reduced vulnerability from what it would have otherwise been. Even with rapidly rising prices, markets—including those fed by cross-border trade in grain with China—are able to ameliorate internal supply constraints to some extent. That said, North Korea has experienced an intensification of long-standing problems of malnutrition and hunger-related deaths. Moreover, the lack of fertilizer and the consequent possibility of a
weak fall harvest in 2008, continuing constraints on commercial imports, and the vacillating policy response of the government will carry the emergency in 2009 if not beyond.

Our analysis suggests an important role for political economy in the understanding of food emergencies, but a political economy that encompasses both domestic policies and foreign policy and the external sector. The long-run solution to North Korea’s chronic food insecurity lies in a political settlement to the nuclear issue and reforms that would open and revitalize the industrial economy. These reforms would allow North Korea to export industrial products, earn foreign exchange, and import bulk grains on a commercially sustainable basis, just as its neighbors South Korea, Japan, and China do. The outstanding question is whether such reform can be achieved by the incumbent government, as the Chinese communist party was able to do, or whether the foreign and domestic policy commitments of the current regime prohibit the policy innovations that would avert such distress in the future.

REFERENCES

Korea Statistitical Information Services. [online; cited December 2006.] Available from URL:

Figure 1. North Korea Food Balances, 1995/96 to 2007/08

Thousands of Metric Tons

- UN Uncovered Import Requirement Estimate
- Aid
- Imports
- Domestic production
- Adjusted Total Demand
- Total Demand
- Adjusted Human Demand
- Human Demand
Figure 2. North Korean Grain Balance

Thousands of Metric Tons

-2000 -1500 -1000 -500 0 500 1000

Haggard-Noland-Weeks Estimate
UN System Estimate
Figure 3. Number of Observations, Corn & Rice
Figure 4. Corn & Rice Price Observations

- Price of Corn
- Price of Rice
Figure 5. North Korean Grain Prices

1. 10/01/2005: Ban on private trade in grain & revival of PDS
2. 07/14/2006-07/15/2006: Flood
3. 10/09/2006: Nuclear Test & UN Sanctions
4. 08/15/2007-08/31/2007: Flood
5. 12/01/2007: Introduction of Chinese Export controls, partial ban on trading activities
6. 04/01/2008: Tightened control on trading activities
7. 05/14/2008: Military stocks reportedly ordered released
8. 05/15/2008: US aid announcement
9. 06/30/2008: Arrival of first aid shipment
Figure 6. Corn Price by Province
Figure 7. Coefficient of Variation of Grain Prices Across Provinces
1. 10/01/2005: Ban on private trade in grain & revival of PDS
2. 07/14/2006– 07/15/2006: Flood
3. 10/09/2006: Nuclear Test & UN Sanctions
4. 08/15/2007- 08/31/2007: Flood
5. 12/01/2007: Introduction of Chinese Export controls, partial ban on trading activities
6. 04/01/2008: Tightened control on trading activities
7. 05/14/2008: Military stocks reportedly ordered released
8. 05/15/2008: US aid announcement
9. 06/30/2008: Arrival of first aid shipment

Figure 8. North Korean Corn-Rice Price Ratio
<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Anticipated effect on prices</th>
</tr>
</thead>
<tbody>
<tr>
<td>October 2005</td>
<td>Ban on private train in grain and revival of the PDS</td>
<td>+</td>
</tr>
<tr>
<td>July 2006</td>
<td>Floods</td>
<td>+</td>
</tr>
<tr>
<td>October 9-14, 2006</td>
<td>Nuclear test and imposition of sanctions</td>
<td>+</td>
</tr>
<tr>
<td>April 2007</td>
<td>Imposition of restrictions on trading</td>
<td>+</td>
</tr>
<tr>
<td>August 2007</td>
<td>Floods</td>
<td>+</td>
</tr>
<tr>
<td>December 2007</td>
<td>Chinese export controls and restrictions on age of women traders in the market</td>
<td>+</td>
</tr>
<tr>
<td>May 14-15, 2008</td>
<td>Reported release of military stocks and announcement of aid package</td>
<td>-</td>
</tr>
<tr>
<td>June 30, 2008</td>
<td>Arrival of first aid shipment at Nampo</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 2. ANOVA of Corn and Rice Price on Time Periods and Regions

First Period January-April 2008
Second Period May-August 2008
Cities included Hamheung, Pyongyang, Sineuiju, Wonsan

CORN

<table>
<thead>
<tr>
<th>Source</th>
<th>Partial SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>Prob > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>929445.779</td>
<td>6</td>
<td>154907.63</td>
<td>1.56</td>
<td>0.1981</td>
</tr>
<tr>
<td>Second Period</td>
<td>715170.97</td>
<td>1</td>
<td>715170.97</td>
<td>7.21</td>
<td>0.0125</td>
</tr>
<tr>
<td>Region</td>
<td>218847.40</td>
<td>3</td>
<td>72949.1342</td>
<td>0.74</td>
<td>0.5403</td>
</tr>
<tr>
<td>Interaction term of Second period & Region</td>
<td>181409.05</td>
<td>2</td>
<td>90704.5257</td>
<td>0.91</td>
<td>0.4132</td>
</tr>
<tr>
<td>Residual</td>
<td>2578851.19</td>
<td>26</td>
<td>99186.5842</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>3508296.97</td>
<td>32</td>
<td>109634.28</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RICE

<table>
<thead>
<tr>
<th>Source</th>
<th>Partial SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>Prob > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>8670814.59</td>
<td>7</td>
<td>1238687.8</td>
<td>5.55</td>
<td>0.0001</td>
</tr>
<tr>
<td>Second Period</td>
<td>6262779.83</td>
<td>1</td>
<td>6262779.83</td>
<td>28.07</td>
<td>0</td>
</tr>
<tr>
<td>Region</td>
<td>1028109.61</td>
<td>3</td>
<td>342703.203</td>
<td>1.54</td>
<td>0.2157</td>
</tr>
<tr>
<td>Interaction term of Second period & Region</td>
<td>300377.749</td>
<td>3</td>
<td>100125.916</td>
<td>0.45</td>
<td>0.7192</td>
</tr>
<tr>
<td>Residual</td>
<td>12050112.8</td>
<td>54</td>
<td>223150.237</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>20720927.4</td>
<td>61</td>
<td>339687.335</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>